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Monte Carlo simulations of a Miyazawa-Jernigan lattice-polymer model indicate that, depending on the
native structure’s geometry, the model exhibits two broad classes of folding mechanisms for two-state folders.
Folding to native structures of low contact order is driven by backbone distance and is characterized by a
progressive accumulation of structure towards the native fold. By contrast, folding to high contact order targets
is dominated by intermediate stage contacts not present in the native fold, yielding a more cooperative folding
process.
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I. INTRODUCTION

Advances in experimental techniques and the use of com-
putational models have shown that most small(from
,50–120 amino acids), single-domain proteins fold via
two-state kinetics, without observable folding intermediates
and with a single transition state associated with one major
free energy barrier separating the native from the unfolded
conformations[1–5]. In addition, it is also well known that
two-state proteins, with similar chain lengths, exhibit a re-
markably wide range of folding rates, folding in microsec-
onds to seconds[6–8]. Understanding what makes some pro-
teins such incredibly fast folders will shed light on the
underlying folding mechanism.

The energy landscape theory predicts that the landscape’s
ruggedness plays a fundamental role in the folding kinetics
of proteins: The existence of local energy minima, which act
as kinetic traps, is responsible for the overall slow and, under
some conditions(as the temperature approaches the glass
transition temperature), glassy dynamics. However, and as
pointed out by Duet al. [9], another equally important aspect
of the folding dynamics is related to the geometry of protein
chain conformations. Indeed, both chain connectivity and
(steric) excluded volume impose restrictions on the number
of allowable conformations a polypeptide chain can adopt,
and these geometrical constraints play a significant role in
determining the folding pathways that are kinetically acces-
sible.

A quantitative measure of geometric complexity, the so-
called relative contact order, CO, was introduced in 1998 by
Plaxcoet al. [8]. The CO is a simple, empirical parameter
measuring the average sequence separation of contacting
residue pairs in the native structure relative to the chain
length of the protein,

CO =
1

LN
o
i,j

N

Di,jui − j u, s1d

whereDi,j =1 if residuesi and j are in contact and is 0 oth-
erwise;N is the total number of contacts andL is the protein

chain length. A strong correlationsr =0.94d was found
between the CO and the experimentally observed folding
rates in a set of 24 nonhomologous single-domain proteins
[10] suggesting a topology-dependent kinetics of two-state
folders. Results obtained by two of us[11] in the context of
a simple Miyazawa-Jernigan(MJ) lattice-polymer model
[11] showed a significant correlation
sr =0.70−0.79d between increasing CO and the longer loga-
rithmic folding times. In a more recent study Jewettet al.
[12] found a similar correlationsr =0.75d for a 27-mer
lattice-polymer modeled by a modified Gō-type potential.
These results support the empirical correlation found be-
tween contact order and the kinetics of two-state folders. In a
recent study[13] Ivankov et al. suggested that the folding
rates of both two-state and multistate folding proteins can be
predicted rather accurately by the so-called absolute contact
order parameter, abs CO=CO3L.

In this paper we investigate whether the geometry of the
native structure does, or does not, promote different folding
processes, eventually leading to different folding times, in
the context of the MJ lattice-polymer model and Monte
Carlo (MC) folding simulations. Although lattice models are
not capable of describing the full complexity of real proteins,
they are nontrivial and thus may capture some fundamental
aspects of protein folding kinetics[14]. The native structures
considered in our study were selected on the basis of their
different contact order parameters. The CO is clearly not the
only way to quantify the native structure’s geometry but the
empirical finding that the CO correlates well with the folding
rates of real proteins strongly motivates its use for the pur-
poses of the present work.

The paper is organized as follows. Sec. II reviews the
model and methods used in the lattice simulations. In Sec. III
the numerical results are presented. We start with a prelimi-
nary study emphasizing the gross distinctive features ob-
served between the folding dynamics to low- and to high-CO
structures. Subsequently we make a more detailed analysis of
the folding dynamics associated with the low-CO and
high-CO native structures that exhibit, respectively, the low-
est and the highest folding times in order to highlight specific
traits of the respective folding processes. In Sec. IV we make
some final remarks and summarize our conclusions.*Electronic address: patnev@alf1.cii.fc.ul.pt
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II. MODEL AND METHODS

We consider a simple three-dimensional lattice model,
based on a bead and stick representation, of a protein mol-
ecule. In such a coarse grained model a bead represents an
amino acid and the unit length stick stands for the peptide
bond that covalently connects amino acids along the
polypeptide chain. The chains consist ofN=48 beads inter-
acting via short-range interactions described by the contact
Hamiltonian

Hshsij,hrWijd = o
i. j

N

essi,s jdDsrWi − rW jd, s2d

where hsij represents an amino acid sequence,si standing
for the chemical identity of beadi, while hrWij is the set of
bead coordinates defining each conformer. The contact func-
tion D is 1 if beadsi and j are in contact but not covalently
linked and is 0 otherwise. We follow previous studies
[15–19] by taking the interaction parameterse from the 20
320 MJ matrix, derived from the distribution of contacts in
real proteins[20].

The folding simulations follow the standard MC Metropo-
lis algorithm[21] and, in order to mimic protein movement,
we use the kink-jump MC move set, including corner-flips,
end and null moves, as well as crankshafts[22].

Each MC run starts from a randomly generated unfolded
conformation(typically with less than ten native contacts)
and the folding dynamics is traced by following the evolu-
tion of the fraction of native contacts,Q=q/Qmax, where
Qmax=57 andq is the number of native contacts at each MC
step. The folding timet is taken as the first passage time
(FPT), that is, the number of MC steps that corresponds to
Q=1.0.

III. NUMERICAL RESULTS

A. Targets

The distribution of the relative contact order parameter
over a population of 500 target geometries, folding to fill a
simple cuboid, was found via homopolymer relaxation[11]
and exhibits CO values that span the intervals centered
around CO=0.13 and CO=0.26. To investigate the effects of

CO on the folding dynamics we selected from our target pool
the three lowest-CO and the three highest-CO maximally
compact structures as the targets of our protein model.

B. A preliminary analysis of the folding dynamics

For each target, a set of 100 proteinlike sequences was
prepared using the Shakhnovich and Gutin design method
[15]. The averaged trained sequence energykEl and its stan-
dard deviations are shown in Table I, where the targets are
ordered with increasing CO.

The folding dynamics was studied at the so-called optimal
folding temperature, the temperature that minimizes the fold-
ing time, taken as the value of the mean FPT to the target
averaged over the 100 MC runs[11]. Note that the high-CO
targets are associated with folding times that are systemati-
cally larger than those associated with the low-CO targets.
Indeed, in this six-element target set, contact order and fold-
ing times correlate wellsr =0.84d. The simulated range of
folding rates is, however, much narrower than that observed
in real proteins(< five orders of magnitude); the simulated
kinetics is typical of this type of models and thus it appears
to be a limitation of the lattice-polymer model as well as of
some continuum, off lattice, models that exhibit similar be-
havior [5].

In order to trace conformational changes we used the so-
called contact map[23]. The contact mapC is an N3N
symmetric matrix with elementsCij =1 if beadsi and j are in
contact(but not covalently linked) and 0 otherwise. In addi-
tion to containing the relevant information on the protein’s
structure(total number of contacts, specification of each con-
tact, and respective range) the contact map representation
provides a straightforward way to compute the frequency
vi j = tij / t with which a native contacti j occurs in a MC run,
tij being the total number of MC steps whereCij =1 andt the
folding time. We have grouped the contacts into two classes,
based on their frequency: Ifvù0.5 the contact is long lived,
while short-lived contacts are those with a frequency 0.4
øv,0.5. We have focused on the contacts that contribute to
the folding process and thus have excluded from the analysis
contacts with small or marginal lifetimes.

We computed the mean frequency of each native contact,
kvi jl, averaged over 100 simulation runs, and report the re-

TABLE I. Summary of target properties with targets organized with increasing contact order parameter,
CO. TargetsT0, T1, andT2 constitute the low-CO target set while targetsT3, T4, andT5 make the high-CO
target set.kEl is the averaged trained energy ands its standard deviation, lne t is the logarithmic folding time,
Q is the fraction of native contacts with mean frequencykvl [we specify the number of long-range(LR)
native contacts], andNnnat is the number of non-native contacts with a marginal lifetime.

Target CO kEl±s ln t Qkvlù0.5 Q0.4økvl,0.5 Nnnatskvlù0.1d

T0 0.126 −25.80±0.03 16.44±0.11 0.25s0LRd 0.19s0LRd 22

T1 0.127 −26.27±0.03 14.99±0.13 0.28s1LRd 0.13s1LRd 16

T2 0.135 −25.78±0.04 16.09±0.12 0.19s3LRd 0.13s1LRd 25

T3 0.241 −25.77±0.03 16.83±0.16 0.05s0LRd 0.19s5LRd 40

T4 0.254 −25.11±0.03 17.35±0.12 0.11s1LRd 0.16s4LRd 38

T5 0.259 −26.16±0.02 17.59±0.12 0.11s2LRd 0.12s4LRd 52
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sults in Table I. We note that in the low-CO set, the fraction
of native contacts with a significant lifetime is approximately
twice as large as the corresponding fraction in the high-CO
set. In both sets, however, most of the long-lived contacts are
local (a contact is local if the contacting beads are separated
by less than ten units of backbone distance), possibly due to
the local nature of the kink-jump dynamics move set.

By contrast, the fraction of short-lived contacts is similar
in both target sets; naturally the number of long-range(LR)
contacts, contributing toQ, is clearly larger in the high-CO
target set. The number of non-native contactsNnnat with a
marginal lifetimeskvlù0.10d is, as expected, larger in the
high-CO target set.

These results indicate that the fraction of long-lived native
contacts is higher in chains folding to low-CO targets and
that, regardless of target geometry, the dynamics appears to
be dominated by local contacts as these are the most fre-
quent. Nevertheless, the appearance of a few long-lived LR
contacts in both target sets suggests that they may play a role
in the folding dynamics of these proteins.

C. Contact order and structural organization towards the
native fold

In this section a detailed study of the folding dynamics
exhibited by targetsT1 and T5 is investigated. TargetsT1
andT5 have considerably different geometries, as suggested
by their contact order, and display the lowest and the highest
observed folding times. Therefore they are good candidates
to highlight the role of the native structure’s geometry(if
any) on the folding dynamics. In particular, we investigate
whether specific structural changes towards the native fold
may be identified for a given native structure’s geometry.

In Fig. 1 we plot the frequencyvi j with which a native
contacti j appears in the folding simulations of six randomly
chosen sequences trained for targetsT1 andT5, respectively.
The major features observed for each target in different runs
suggest a trend for the folding dynamics of targetT1 that is
markedly different from that observed for targetT5. In what
follows we will investigate this difference.

Figures 2(a) and 2(b) show thefrequency mapsof targets
T1 andT5, respectively. Each square represents an element
Cij =1 of the contact map matrix, that is, a native contacti j ,
whose mean frequencykvi jl, averaged over 100 MC runs,
falls in a certain range indicated by the different colors. The
frequency maps clearly identify the two model structuresT1
andT5 and exhibit their different geometries. It is possible to
identify a pattern in the color distribution of targetT1, which
is not present in the frequency map of targetT5, suggesting
that the mean frequency of a native contact decreases mono-
tonically with increasing contact distance in the low-CO tar-
get.

Let the backbone frequencykvui−j ul be the mean frequency
kvi jl averaged over the number of contacts in each interval
of backbone separation as defined in Table II. In Figs. 3(a)
and 3(b) we plot the backbone frequency as a function of the
distanceui − j u for the targets of the low-CO and the high-CO
sets, respectively. While for all low-CO targetskvui−j ul de-
creases monotonically with increasing contact distance, con-

firming the trend observed in theT1 frequency map, for the
high-CO targets no such trend is observed. One possible ex-
planation that we have ruled out is that of a(negative) cor-
relation between the frequency of a contact and its energy. In
particular, one might expect the most stable contacts, those
with the lowest energy, to be the most frequent. In Figs. 2(c)
and 2(d) we report theenergy mapsof targetsT1 andT5,
respectively. Each square represents a native contact whose
mean energy, averaged over 100 sequences, falls in a range
indicated by the color. Since there is no correspondence be-
tween the color patterns of Figs. 2(a) and 2(c) and between
those of Figs. 2(b) and 2(d) we conclude that the difference
is driven by geometrical constraints. A quantitative analysis
of the correlation between the contact’s frequencies and en-
ergies yields modest correlation coefficientsr =0.63 andr
=0.65 for targetsT1 andT5, respectively.

Let the contact timet0 be the mean FPT of a native con-
tact averaged over 100 MC runs(the FPT of a native contact
is the number of MC steps up to the first time the contact is
formed). The contact times, averaged over the contacts in
each interval of backbone distance, as shown in Table II, are

FIG. 1. Frequency with which a native contact(numbered from
1 to 57) occurs in the folding simulations of six randomly chosen
sequences trained for targetsT1 (a) and T5 (b). The contact fre-
quency is the ratio of the number of times a native contact occurs in
a MC simulation to the folding time. Note how frequency of occur-
rence of particular contacts has strong correlation between different
trained sequences, which is a clear dependence on conformation
alone.
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plotted in Fig. 4: In both targets the setup of local contacts
occurs largely before the LR contacts are established and, for
LR contacts, there is no correlation between the contact time
and the backbone distance. In view of these results one may
be tempted to conclude that the higher folding time ofT5 is
due to the fact that it has more LR contacts. However, the
folding time is nonadditive and a simple calculation shows
that the higher number of LR contacts cannot justify the
observed folding time ofT5. Indeed, the longest contact time
sln t0=12.24d is two orders of magnitude shorter than the

folding time of T5 and the sum of contact times is
lnsoi=1

57 t0
i d=15.51, much lower than the observed folding

time ln t=17.59.
From the results of Fig. 4 we infer that the average con-

tact times, over a given range, are similar for both targets.
Thus the differences in the observed frequencies reported in
Fig. 3 distinguish different cooperative behaviors.

Results obtained so far suggest that two broad classes of
folding mechanisms exist for the MJ lattice-polymer model.
What distinguishes these two classes is the presence, or ab-

FIG. 2. (Color online). Frequency maps of targetsT1 (a) andT5 (b) and energy maps of targetsT1 (c) andT5 (d). A colored square
represents a native contact with an averaged mean frequencykvl or an averaged mean energyE. Averages are taken over 100 MC runs.

TABLE II. Fraction of native contactsQ at consecutive intervals of backbone distance, measured in units
of lattice spacing, for targetsT1 andT5.

Target Backbone distance

f3,8f f8,13f f13,18f f18,23f f23,28f f28,33f f33,38f f38,43f

T1 0.49 0.18 0.19 0.07 0.05 0.02

T5 0.23 0.04 0.09 0.19 0.14 0.05 0.14 0.13
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sence, of a monotonic decrease of contact frequency with
increasing contact range that may be related to different co-
operative behavior. The monotonic decrease of contact fre-
quency with increasing contact range appears to be specific
of the folding to low-CO targets. In this case the folding is
also less cooperative and seems to be driven by the backbone
distance: Local contacts form first while LR contacts form
progressively later as the contact range increases.

At this point one may ask if the different folding mecha-
nisms identified in the previous discussion are not a conse-
quence of analyzing only two different structures, i.e., there
could be intermediate mechanisms for intermediate native
structures. In order to clarify this point, we have analyzed the
folding of Shakhnovich and Gutin sequences designed to
three target geometries with intermediate contact order
(0.163, 0.173, and 0.189) and the results are reported in Fig.
3(c). The folding times associated with these three structures
are 15.67±0.09, 16.46±0.09, and 16.04±0.12 and we found
that the contact order and the folding times, for the nine-
element target set, correlate wellsr =0.82d. The average se-
quence energy is in the same range as that of the targets
reported in Table I. However, it is clear from the figure that
intermediate- and high-CO proteins fold via the same type of
cooperative mechanism.

D. Contact order and the exploration
of the conformational space

In this section we analyze the time evolution of the 57
native contacts of targetsT1 andT5 to obtain a picture of the
“global” structural changes that occur during folding.

In the folding process a chain explores conformations that
may be characterized by the fraction of native contacts,Q.
Different native contacts will contribute to conformations
with the sameQ. In a MC run the probability of occurrence
of a certain native contact is equal to the number of times
that the contact occurs over the number of times that confor-
mations with a given fraction of native contacts,Q, are
sampled.

Since in a given run some native contacts are more prob-
able(or more frequent) than others, one may consider differ-
ent probability intervals and ask, from the total number of
native contacts, how many occur within a given probability
interval, at fixedQ. The result gives the dependence of the
number of contactsC on P, the probability of a contact being
formed, and onQ, the fraction of native contacts[24]. Re-
sults, averaged over 100 simulation runs, are reported in Fig.

FIG. 3. The backbone frequencykvui−j ul as a function of the
backbone distance for the low-CO(a), high-CO (b), and
intermediate-CO targets(c). The backbone frequency is the mean
value ofkvl, averaged over the number of contacts in each interval
of backbone distance as shown in Table II. The backbone distance is
measured in units of lattice spacing.

FIG. 4. The averaged contact time lnekt0l as a function of the
backbone distance.t0, the number of MC steps up to the first time
the contact is formed, was averaged over the number of contacts in
each interval of backbone distance as shown in Table II. The back-
bone distance is measured in units of lattice spacing.
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5(a) for T1 and in Fig. 5(b) for T5 where the coordinateQ
may be interpreted as a monotonic “time” coordinate along
the folding process. Accordingly, early folding corresponds
to low Q while late folding occurs at highQ.

A first look at the figures suggests smooth dynamics for
the time evolution ofT1’s 57 native contacts by comparison
with T5 that exhibits a considerably more “rugged” behavior.
Indeed, for a fixed probability interval, the variation, as a
function Q, of the number of native contactsC which are
present with that probability is clearly more pronounced for
T5 than forT1. This suggests thatT5 does not keep a con-
siderable number of its native contacts as it evolves from a
conformationGsQd to another conformationG8sQ8d during
its exploration of the conformational space towards the na-
tive fold. A closer look shows other important differences. In
the early foldingsQ,0.35d of T1 there are a few near per-
manent contacts, that is, highly probable contactssP
ù0.80d, by contrast withT5 where highly probable contacts
occur only latersQù0.50d. Indeed, in the late folding ofT5,
there are still a few contacts with rather low probabilityP
<0.25. Moreover, asQ increases, the number of contacts in
the two highest probability intervals increases smoothly for
T1, while for T5 the number of high-probability contacts
shows a sudden increase only atQ<0.7. These dynamical
features are consistent with a folding scenario according to
which T1 explores more correlated nativelike conformations
as time evolves. ForT5, however, even though the chain is
getting more compact as it evolves towards the native fold it
still explores many uncorrelated conformations up to the late
folding stage.

E. Contact order and non-native contacts

To investigate the effects of non-native contacts in the
folding dynamics to geometrically different native structures
we have computed the dependence of the averaged number
of non-native contacts,kNnnatl, with Q. The average is taken
over 100 MC runs. Results reported in Fig. 6 show that it is
possible to identify two distinct dynamical regimes: For
Q.0.5 the number of non-native contacts decreases mono-

tonically with Q independent of target geometry. However,
for lower Q, the dynamics is target sensitive with the
high-CO target displaying a larger number of total contacts.
These data are consistent with a folding scenario where, in
the early folding of the high-CO target, conformational sam-
pling is geometrically restricted due to preexisting compact
structures.

Within the context of the energy landscape theory signifi-
cant energy barriers, or kinetic traps, are known to exist be-
tween compact denaturated structures slowing down the
folding process. Can the observed compact structures act as
kinetic traps in the folding ofT5?

In order to answer this question we have computed the
transition probability curves for both targets where the pres-
ence of plateaus indicates the presence of kinetic traps. In a
transition probability curve the folding probabilityPfoldstd is
plotted againstt. Results for targetsT1 andT5 are shown in
Fig. 7 where no plateaus are visible. Thus, based on these
results, one cannot claim that the longer folding time ofT5 is
due to the presence of kinetic traps.

Why do high-CO structures form compact denatured
states? We associate these conformers with the existence of

FIG. 5. Number of contactsC with a given probability of being formedP as a function ofQ, the fraction of native contacts for targets
T1 (a) andT5 (b). These are results averaged over 100 MC folding runs. See text for details.

FIG. 6. Mean number of non-native contactskNnnatl, averaged
over 100 MC runs, as a function of the fraction of native contactsQ
for targetsT1 andT5.
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high-frequency, LR native contacts. Indeed, native contacts
with a backbone separation in the range 35ø ui − j uø39 and
frequency in the range 0.40øvi j ø0.57 correspond to con-
formers characterized byQ<0.18 and a total number of con-
tacts close to 30(of which <20 are non-native). Figure 6
confirms that forQ=0.18 targetT5 is considerably more
compact than targetT1 that has onlys<12d non-native con-
tacts.

These findings suggest the following interpretation of the
behavior observed in Fig. 5 for the dynamics of the high-CO
target’s ensemble of native contacts: The promiscuous for-
mation of LR contacts takes the chain through low confor-
mational entropy states from where it reorganizes in a time
consuming process towards the native fold. This major reor-
ganization explains why even in the late stages of folding the
chain is still exploring sets of unrelated conformations.

IV. CONCLUSIONS AND FINAL REMARKS

In the present work we have carried out a thorough sta-
tistical analysis of the folding dynamics of 48 mers, within
the MJ lattice-polymer model, designed to high, intermedi-
ate, and low-CO target structures, in order to investigate the
folding mechanisms associated with different target geom-
etries, and the corresponding folding rates.

We found two broad classes of folding mechanisms for
the MJ lattice-polymer model. The main feature of the first
class, which describes the folding of low-CO targets, is a
monotonic decrease of contact frequency with increasing
contact range; indeed, such dependence seems to be a spe-
cific trait of the dynamics associated with low-CO targets.
The building up of native structure is driven by backbone
distance with local contacts forming first and nonlocal con-
tacts forming progressively later as contact range increases.
Moreover, the analysis of the time evolution of the 57 native
contacts shows a progressive cumulative construction of the
native fold with the chain exploring more correlated native-
like conformations as time evolves. Folding to low-CO na-
tive structures is therefore gradual rather than abrupt(or co-

operative). Folding to intermediate and high-CO targets
belongs to a different class, where the dependence of contact
frequency on contact range is nonmonotonic. The folding is
markedly more cooperative with many high-probability con-
tacts forming suddenly only in the late stages of folding. Our
results suggest that the higher cooperativity of the high-CO
folding dynamics is due to the presence of LR contacts. A
similar conclusion on the role of LR contacts in the folding
dynamics was obtained by Abkevichet al. in Ref. [19].

A common feature of the two folding classes is that the
dynamics is dominated by local contacts in the sense that
they are the most frequent during the folding process. This
feature results, in part, from the local nature of the move set
used in the simulations which favors the formation of local
contacts.

At this stage a word on the correlation between CO and
folding times is in order. Although the correlation coefficient
between CO and lnt for the six targets of Table I is high
sr =0.82d the difference in folding times is relatively modest
and this correlation should be taken with caution. Indeed,
when one includes the nine targets studied in this work the
correlation coefficient decreases, a clear indication that these
numbers are not conclusive. However, the geometry driven
cooperativity appears to be rather robust and this implies an
increase in folding times as the cooperativity increases.

Related studies have investigated the physical mecha-
nisms behind the(empirical) geometry-dependent kinetics
exhibited by two-state folders. Work on the “topomer search
model” (TSM) concludes that the topology dependence of
real two-state folders is “a direct consequence of the extraor-
dinary cooperative equilibrium folding of simple proteins”
[25]. In agreement with the TSM results Jewettet al. [12]
showed that modified Gō-type polymers, exhibiting en-
hanced thermodynamic cooperativity, display a larger disper-
sion of the folding rates and a stronger topology-dependent
kinetics than traditional, noncooperative Gō polymers. In a
very recent study, Kaya and Chan suggested that the way
thermodynamic cooperativity is achieved may be as impor-
tant as thermodynamic cooperativityper se in topology-
dependent kinetics[5]. By studying a modified Gō model,
with many-body interactions, the authors found folding rates,
well correlatedsr =0.914d with CO, spanning a range two
orders of magnitude larger than that of Gō models with ad-
ditive contact energies.

The results for the modified Gō models and our current
results for the MJ model shed light on our previous finding
[11] of a particularly strong correlationsr <0.80d between
higher-CO structures and longer logarithmic folding rates;
these structures have a larger number of LR contacts that
enhance the cooperativity of the folding transition. This co-
operativity appears to be the essential ingredient of topology-
dependent kinetics.
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FIG. 7. Dependence of the folding probabilityPfold on log10std
for targetsT1 andT5. Pfold was calculated as the number of folding
simulations which ended up to timet normalized to the total num-
ber of runs.
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